Short term functional changes in brain perfusion and cognitive functioning with the use of non-invasive brain stimulation in patients with cognitive impairment
Keywords:
cognitive impairment, transcranial direct, current stimulation, brain perfusionAbstract
Introduction: Cognitive impairment is a challenge for contemporary neurosciences. With the development of neuromodulation, there have been described interesting results that point out the possibility of improving cognitive functions in patients with mild cognitive impairment (MCI) and dementia using transcranial direct current stimulation (tDCS). Here, we described the neuromodulatory effect of tDCS in three patients with MCI.
Methods: We studied three patients with diagnostic of MCI, who were examined by means of Alzheimer Disease Assessment Scale, cognitive subscale (ADAS-Cog), an electroencephalogram, and a Single Photon Emission Tomography (SPECT). They were examined before and a few days after completing 20 sessions of tDCS over frontal areas. Anode was located over left dorsolateral prefrontal cortex, and cathode over right frontopolar region. Stimulation intensity was set at 2 mA, in 20 minutes sessions.
Results: We observed a tendency towards a decrease in total ADAS-Cog score; especially in items: word recalls, object and finger denomination, ideatory praxis and orientation. We identified an increase in brain perfussion in superior, median and inferior left frontal gyrus, precentral gyrus(bilateral), cingular gyrus, and right putamen, insular cortex and thalamus.
Conclusions: The use of tDCS in MCI patients was associated with favourable changes in some items from ADAS-Cog, and an increase in brain perfusion in a few cortical and subcortical structures.
References
Muniz R, Serra CM, Reisberg B, Rojo JM, Del Ser T, Pena Casanova J, et al. Cognitive-motor intervention in Alzheimer's disease: long-term results from the Maria Wolff trial. Journal of Alzheimer's disease : JAD. 2015;45(1):295-304. doi: 10.3233/JAD-142364.
Jia J, Wei C, Liang J, Zhou A, Zuo X, Song H, et al. The effects of DL-3-n-butylphthalide in patients with vascular cognitive impairment without dementia caused by subcortical ischemic small vessel disease: A multicentre, randomized, double-blind, placebo-controlled trial. Alzheimers Dement. 2016;12(2):89-99. doi: 10.1016/j.jalz.2015.04.010. Epub Jun 15.
Narasimhalu K, Effendy S, Sim CH, Lee JM, Chen I, Hia SB, et al. A randomized controlled trial of rivastigmine in patients with cognitive impairment no dementia because of cerebrovascular disease. J Lipid Res. 2010;51(5):1179-85. doi: 10.94/jlr.M002667. Epub 2009 Nov 24.
Penteado SH, Teodorov E, Kirsten TB, Eluf BP, Reis-Silva TM, Acenjo MK, et al. Obesity and diabetes cause cognitive dysfunction in the absence of accelerated beta-amyloid deposition in a novel murine model of mixed or vascular dementia. Eur J Pharmacol. 2014;738:342-51.(doi):10.1016/j.ejphar.2014.05.058. Epub Jun 11.
Samani A, Davagnanam I, Cockerell OC, Ramsay A, Patani R, Chataway J. Lymphomatosis cerebri: a treatable cause of rapidly progressive dementia. J Neurol Neurosurg Psychiatry. 2015;86(2):238-40. doi: 10.1136/jnnp-2013-307327. Epub 2014 May 20.
Peters R, Beckett N, Fagard R, Thijs L, Wang JG, Forette F, et al. Increased pulse pressure linked to dementia: further results from the Hypertension in the Very Elderly Trial - HYVET. J Hypertens. 2013;31(9):1868-75. doi: 10.097/HJH.0b013e3283622cc6.
van Straaten EC, Harvey D, Scheltens P, Barkhof F, Petersen RC, Thal LJ, et al. Periventricular white matter hyperintensities increase the likelihood of progression from amnestic mild cognitive impairment to dementia. Clinical trials (London, England). 2008;5(5):523-33. doi: 10.1177/1740774508096313.
Anderson K, Bird M, Macpherson S, McDonough V, Davis T. Incidence of dementia is increased in type 2 diabetes and reduced by the use of sulfonylureas and metformin. Geriatr Nurs. 2011;32(3):166-77. doi: 10.1016/j.gerinurse.2010.12.011. Epub 1 Feb 9.
Chen Y, Wang J, Wang LJ, Lin H, Huang PJ. Effect of different blood glucose intervention plans on elderly people with type 2 diabetes mellitus combined with dementia. Eur Rev Med Pharmacol Sci. 2017;21(11):2702-7.
Stanley MA, Calleo J, Bush AL, Wilson N, Snow AL, Kraus-Schuman C, et al. The peaceful mind program: a pilot test of a cognitive-behavioral therapy-based intervention for anxious patients with dementia. Am J Geriatr Psychiatry. 2013;21(7):696-708. doi: 10.1016/j.jagp.2013.01.007. Epub Feb 6.
Schulz KP, Clerkin SM, Fan J, Halperin JM, Newcorn JH. Guanfacine modulates the influence of emotional cues on prefrontal cortex activation for cognitive control. Psychopharmacology (Berl). 2013;226(2):261-71. doi: 10.1007/s00213-012-2893-8. Epub 2012 Oct 20.
Forstmeier S, Maercker A, Savaskan E, Roth T. Cognitive behavioural treatment for mild Alzheimer's patients and their caregivers (CBTAC): study protocol for a randomized controlled trial. Trials. 2015;16:526.(doi):10.1186/s13063-015-1043-0.
Gareri P, Putignano D, Castagna A, Cotroneo AM, De Palo G, Fabbo A, et al. Retrospective study on the benefits of combined Memantine and cholinEsterase inhibitor treatMent in AGEd Patients affected with Alzheimer's Disease: the MEMAGE study. Journal of Alzheimer's disease : JAD. 2014;41(2):633-40. doi: 10.3233/JAD-132735.
Reale M, Iarlori C, Gambi F, Feliciani C, Isabella L, Gambi D. The acetylcholinesterase inhibitor, Donepezil, regulates a Th2 bias in Alzheimer's disease patients. Pharmacogenomics J. 2006;6(4):246-54. doi: 10.1038/sj.tpj.6500369. Epub 2006 Jan 31.
Fleischhacker WW, Buchgeher A, Schubert H. Memantine in the treatment of senile dementia of the Alzheimer type. Acta Psychiatr Scand Suppl. 1986;329:81-91.(doi):10.1111/j.600-0447.1986.tb10541.x.
Iimori T, Nakajima S, Miyazaki T, Tarumi R, Ogyu K, Wada M, et al. Effectiveness of the prefrontal repetitive transcranial magnetic stimulation on cognitive profiles in depression, schizophrenia, and Alzheimer's disease: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry. 2019;88:31-40.(doi):10.1016/j.pnpbp.2018.06.014. Epub Jun 25.
Yulug B, Hanoglu L, Khanmammadov E, Duz OA, Polat B, Hanoglu T, et al. Beyond The Therapeutic Effect of rTMS in Alzheimer's Disease: A Possible Neuroprotective Role of Hippocampal BDNF? : A Minireview. Mini Rev Med Chem. 2018;18(17):1479-85. doi: 10.2174/1389557517666170927162537.
Nguyen JP, Boutoleau-Bretonniere C, Lefaucheur JP, Suarez A, Gaillard H, Chapelet G, et al. Efficacy of Transcranial Direct Current Stimulation Combined with Cognitive Training in the Treatment of Apathy in Patients with Alzheimer's Disease: Study Protocol for a Randomized Trial. Reviews on recent clinical trials. 2018;13(4):319-27. doi: 10.2174/1574887113666180416153316.
Liu CS, Rau A, Gallagher D, Rajji TK, Lanctot KL, Herrmann N. Using transcranial direct current stimulation to treat symptoms in mild cognitive impairment and Alzheimer's disease. Neurodegener Dis Manag. 2017;7(5):317-29. doi: 10.2217/nmt-017-0021. Epub 2017 Oct 18.
Borgesius NZ, de Waard MC, van der Pluijm I, Omrani A, Zondag GC, van der Horst GT, et al. Brain stimulation improves associative memory in an individual with amnestic mild cognitive impairment. J Neurosci. 2011;31(35):12543-53. doi: 10.1523/JNEUROSCI.1589-11.2011.
Miniussi C, Cappa SF, Cohen LG, Floel A, Fregni F, Nitsche MA, et al. Efficacy of repetitive transcranial magnetic stimulation/transcranial direct current stimulation in cognitive neurorehabilitation. Brain stimulation. 2008;1(4):326-36.
Kim J, Lee M, Yim J. A New Approach to Transcranial Direct Current Stimulation in Improving Cognitive Motor Learning and Hand Function with the Nintendo Switch in Stroke Survivors. Med Sci Monit. 2019;25:9555-9562.(doi):10.12659/MSM.921081.
Brem AK, Almquist JN, Mansfield K, Plessow F, Sella F, Santarnecchi E, et al. Modulating fluid intelligence performance through combined cognitive training and brain stimulation. Neuropsychologia. 2018;118(Pt A):107-14. doi: 10.1016/j.neuropsychologia.2018.04.008. Epub Apr 9.
Inagawa T, Yokoi Y, Narita Z, Maruo K, Okazaki M, Nakagome K. Safety and Feasibility of Transcranial Direct Current Stimulation for Cognitive Rehabilitation in Patients With Mild or Major Neurocognitive Disorders: A Randomized Sham-Controlled Pilot Study. Front Hum Neurosci. 2019;13:273.(doi):10.3389/fnhum.2019.00273. eCollection 2019.
Antal A, Alekseichuk I, Bikson M, Brockmöller J, Brunoni AR, Chen R, et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol. 2017;128(9):1774-809. doi: 10.016/j.clinph.2017.06.001. Epub Jun 19.
Batista Garcia-Ramo K, Sanchez Catasus CA, Morales Chacon L, Aguila Ruiz A, Sanchez Corneaux A, Rojas Lopez P, et al. A Novel Noninvasive Approach Based on SPECT and EEG for the Location of the Epileptogenic Zone in Pharmacoresistant Non-Lesional Epilepsy. Medicina (Kaunas). 2019;55(8).(pii):medicina55080478. doi: 10.3390/medicina.
Mazziotta JT, A. . A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical transactions of the Royal Society of London Series B, Biological sciences. 2001;356(1412):1293-322.
Broche AJ, P.; BIraben, A,; Bernard, A.; Haegelen, C.; Prigent, F.; Gibaud, B. Evaluation of methods to detect interhemispheric asymmetry on cerebral perfision SPECT: Application to epilepsy. Journal of Nuclear mEDICINE. 2005;46(4):707-13.
Bikson M, Grossman P, Thomas C, Zannou AL, Jiang J, Adnan T, et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain stimulation. 2016;9(5):641-61.
Horne KS, Filmer HL, Nott ZE, Hawi Z, Pugsley K, Mattingley JB, et al. Evidence against benefits from cognitive training and transcranial direct current stimulation in healthy older adults. Nat Hum Behav. 2021;5(1):146-58. doi: 10.1038/s41562-020-00979-5. Epub 2020 Oct 26.
Chu CS, Li CT, Brunoni AR, Yang FC, Tseng PT, Tu YK, et al. Cognitive effects and acceptability of non-invasive brain stimulation on Alzheimer's disease and mild cognitive impairment: a component network meta-analysis. J Neurol Neurosurg Psychiatry. 2021;92(2):195-203. doi: 10.1136/jnnp-2020-323870. Epub 2020 Oct 28.
Begemann MJ, Brand BA, Ćurčić-Blake B, Aleman A, Sommer IE. Efficacy of non-invasive brain stimulation on cognitive functioning in brain disorders: a meta-analysis. Psychol Med. 2020;50(15):2465-86. doi: 10.1017/S0033291720003670. Epub 2020 Oct 19.
Lu H, Chan SSM, Chan WC, Lin C, Cheng CPW, Linda Chiu Wa L. Randomized controlled trial of TDCS on cognition in 201 seniors with mild neurocognitive disorder. Ann Clin Transl Neurol. 2019;6(10):1938-48. doi: 10.002/acn3.50823. Epub 2019 Sep 17.
Bragina OA, Lara DA, Nemoto EM, Shuttleworth CW, Semyachkina-Glushkovskaya OV, Bragin DE. Increases in Microvascular Perfusion and Tissue Oxygenation via Vasodilatation After Anodal Transcranial Direct Current Stimulation in the Healthy and Traumatized Mouse Brain. Advances in experimental medicine and biology. 2018;1072:27-31.(doi):10.1007/978-3-319-91287-5_5.
Liu CS, Herrmann N, Gallagher D, Rajji TK, Kiss A, Vieira D, et al. A Pilot Study Comparing Effects of Bifrontal Versus Bitemporal Transcranial Direct Current Stimulation in Mild Cognitive Impairment and Mild Alzheimer Disease. J ECT. 2020;36(3):211-5. doi: 10.1097/YCT.0000000000000639.
Chhatbar PY, Chen R, Deardorff R, Dellenbach B, Kautz SA, George MS, et al. Safety and tolerability of transcranial direct current stimulation to stroke patients - A phase I current escalation study. Brain stimulation. 2017;10(3):553-9.
L. G. Efecto placebo en la medicina contemporánea. Revista Cubana de Neurología y Neurocirugía. 2020;Oct-Dic.
Holczer A, Németh VL, Vékony T, Vécsei L, Klivényi P, Must A. Non-invasive Brain Stimulation in Alzheimer's Disease and Mild Cognitive Impairment-A State-of-the-Art Review on Methodological Characteristics and Stimulation Parameters. Front Hum Neurosci. 2020;14:179.(doi):10.3389/fnhum.2020.00179. eCollection 2020.
Downloads
Published
How to Cite
Issue
Section
License
The authors retain copyright and all unrestricted publication rights.
Medicoquirúrgicas Research is licensed under the Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0) and follows the SciELO Publishing Schema (SciELO PS) for publishing in XML format.
You are free to:
- Share — copy and redistribute the material in any medium or format.
- Adapt — remix, transform, and build upon the material.
The license cannot revoke these freedoms as long as you follow the license terms.
Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do this in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
Non-Commercial — You may not use the material for commercial purposes.
No Additional Restrictions — You may not apply legal terms or technological measures that legally restrict others from making any use permitted by the license.
Notices:
You do not have to comply with the license for elements of the material in the public domain or where their use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all the permissions you need for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.
