Aortic bypass: an experimental model of microsurgical training in the rat

Authors

Keywords:

surgical anastomosis, bypass, Wistar rats

Abstract

Introduction: Training in advanced microsurgical techniques includes end-to-side anastomosis, which is performed in laboratory rats using an aortic bypass model.

Objective: To describe the technique of aortic bypass in an experimental model in rats.

Methods: Two Wistar rats were used (one as the donor and the other as the recipient). The donor was used to harvest the abdominal aorta on the day of the end of a faculty project. The recipient underwent aortic bridge with the portion of the aorta harvested from the donor by creating two end-to-side anastomoses. Both were anesthetized with sodium thiopental (60 mg/kg of body weight) intraperitoneally. Binocular goggles, basic microsurgical instruments, 10-0 polypropylene microsutures, and simple vascular microclamps were used.

Results: The illustrated description of this technique allows residents and specialists to successfully perform this aortic bypass model. It helps achieve the estimated time (less than 30-45 minutes), refine this vascular suturing technique, and achieve optimal anastomosis patency.

Conclusions: The description of the technique in this aortic bypass model is an excellent exercise for the acquisition of microsurgical skills.

References

1. Carbonell Cantí C. Reflexiones sobre una técnica quirúrgica: el bypass arterial. Discurso de recepción del académico electo. Real Academia de Medicina de la Comunidad Valenciana. Valencia, España [Internet]. 2012 [acceso: 22/03/2025]; 1-110. Disponible en:

https://www.uv.es>III-03-Dr_Carbonell.pdf.

2. Gamero Medina V, Orgaz Alvarez M, Cedeño Poveda MF, Bautista Castro JJ, Cobos Alonso J. Complicaciones del Bypass Aórtico [Internet]. 2018. Disponible en: https://piper.espacio-seram.com/index.php/seram/article/view/1290

3. Camacho García, FJ, Ramírez León, JF, Rojas Galvis, MA, Cortés Barré, M, Cogua Cogua, LN. Guía de microcirugía en técnicas de entrenamiento en cirugía de mínima invasión [Internet]. Rev Colomb Ortop Traumatol. 2019 [acceso: 22/03/2025]; 33(52):18-33. Disponible en: https://doi.org/10.1016/j.rccot.2019.07.007

4. Lawton MT, Lang MJ. The future of open vascular neurosurgery: perspectives on cavernous malformations, AVMs, and bypasses for complex aneurysms [Internet]. J Neurosurg. 2019 [acceso: 22/03/2025]; 130(5):1409–25. Disponible en: https://thejns.org/view/journals/j-neurosurg/130/5/article-p1409.xml

5. Pérez Zabala J, Beldi F,Tovar A, Kuchlewski P, Nuñez M, Lozano G, Abojer L, Belziti H. Modelo integral de entrenamiento microquirúrgico y neuroendovascular con placenta humana [Internet]. Revista Argentina de Neurocirugía. 2020 [acceso: 22/03/2025]; 34(04). Disponible en: https://www.ranc.com.ar/index.php/revista/article/view/149/113

6. Zapata Ospina A, Hoyos A. Técnica de microcirugía para entrenamiento en supermicrocirugía [Internet]. Rev Col Cirugía Plástica y Reconstructiva. 2023 [acceso: 22/03/2025]; 29(1):39-44 Disponible en: http://www.ciplastica.com

7. Rodríguez Sosa VM, Domínguez López HA, Zubizarreta Hernández I, Gutiérrez González A, Aliaga Aliaga Y. Entrenamiento básico de microcirugía. Centro de Cirugía Experimental, Instituto de Ciencias Básicas y Preclínicas “Victoria de Girón” [internet]. Rev Haban Cienc Méd. 2018 [acceso: 26/03/2025]; 18(1):17-29. Disponible en: http://www.revhabanera.sld.cu/index.php/rhab/article/view/2228

8. Pruthi N, Tyagi G, Gohil D. End-to-side microvascular anastomosis on rat femoral vessels using only 2-throw knot interrupted sutures—evaluation of feasibility and patency rates on rat femoral vessels model [Internet]. World Neurosurg. 2021; 148: e145–e50. DOI: 10.1016/j.wneu.2020.12.078

9. Thamm OC, Eschborn J, Schäfer RC, Schmidt J. Advances in Modern Microsurgery [Internet]. J Clin Med. 2024; 13: 5284. DOI: https://doi.org/10.3390/jcm13175284

10. American Veterinary Medical Association (AVMA) [Internet]. 2022. Human-animalbond.AVMA.org. Disponible en: htpps://www.avma.org/kb/resources/reference/human.

animalbond/pages/human.animal-bond-avma.

11. Rusly Hariantana Hamid, AR. Optimizing microsurgery training for plastic surgery resident: A systematic review [Internet]. Neurologico Spinale Medico Chirurgico. 2022 [acceso: 29/03/2025]; 5(1):45-51 Disponible en: https://www.researchgate.net/publication/365374560_Optimizing_ microsurgery_ training_for_plastic_surgery_resident_A_systematic_review

12. Velayos M, Estefanía Fernández K, Muñoz Serrano AJ, Delgado Miguel C, Sarmiento Caldas MC, Moratilla Lapeña L, et al. Hacia un programa inicial de formación estandarizado en microcirugía experimental para cirujanos pediátricos [Internet]. Cir Pediatr. 2023 [acceso: 29/03/2025]; 36: 83-89 Disponible en: https://secipe.org/coldata/upload/revista/2023_36-2ESP_83.pdf

13.Javid P, Aydin A, Mohanna PN, Dasgupta P, Ahmed K. Current status of simulation and training models in microsurgery: A systematic review [Internet]. Microsurgery. 2019; 39 (7): 655-68. DOI: 10.1002/micr.30513

14. Kania K, Chang DK, Abu-Ghname A, Reece EM, Chu CK, Maricevich M, et al. Microsurgery Training in Plastic Surgery [Internet]. Plast Reconstr Surg Glob Open. 2020; 8(7): e2898. DOI: 10.1097/GOX0000000000002898

Published

2025-07-26

How to Cite

1.
Rodríguez Sosa VM. Aortic bypass: an experimental model of microsurgical training in the rat. Invest Medicoquir [Internet]. 2025 Jul. 26 [cited 2025 Dec. 27];17(1):e981. Available from: https://revcimeq.sld.cu/index.php/imq/article/view/981

Issue

Section

Research article