Models of arterial hypertension in rats Wistar

Authors

Keywords:

blood pressure, Rattus norvegicus, sodium, nephrectomy

Abstract

Introduction: Worldwide, systemic high blood pressure causes more than twelve million heart and vascular accidents each year. The use of experimental animal models has provided information on the pathophysiology, complications, and treatment of hypertension.

Objective:  Obtain a biomodel of arterial hypertension in Wistar rats.

Methods: This study was carried out at the Experimental Toxicology Unit of Villa Clara. A total of 30 rats of the species Rattus norvegicus Wistar line were used. The experimental procedure for establishing arterial hypertension through the administration of saline solution was characterized pathophysiologically. Subtotal nephrectomy was performed to establish arterial hypertension in the experimental procedure.

Results: Sodium retention led to increased blood pressure on days 7 and 15, with kidney damage. Renal subtotal nephrectomy increased sodium retention and resulted in increased blood pressure and impaired renal function. Sodium retention and damage from kidney injury led to increased blood pressure due to natriuresis imbalance, as well as accentuating tissue damage.

Conclusions: An experimental biomodel was obtained by two routes, and the renal subtotal nephrectomy procedure was the one that best simulated the pathological characteristics of arterial hypertension.

Author Biography

Ramón Romero Borges, Unidad de Toxicología Experimental Universidad de Ciencias Medicas Villa Clara

Investigador y Profesor Universitario.

References

1. Pérez Ramos, A., Barber Fox, M., González Núñez, L., Barber Gutiérrez, E., Victorio Fresneda, M. Manejo renal de sodio en un modelo experimental de hipertensión arterial inducido por valsartan en ratas. Invest. Medicoquir. 2015; 7 (2): 253-267.

2. Coll Muñoz Yanier, Valladares Carvajal Francisco, González Rodríguez Claudio. Infarto agudo de miocardio. Actualización de la Guía de Práctica Clínica. Rev. Finlay [Internet]. 2016 [citado 2024 Feb 28]; 6(2): 170-190. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2221-24342016000200010&lng=es

3. Conn PM. Animal Models for the Study of Human Disease: Second edition. Animal Models for the Study of Human Disease: Second Edition. 2017. 1–1177 p.

4. Pérez Caballero MD, León Álvarez JL, Dueñas Herrera A, Alfonzo Guerra JP, Navarro Despaigne DA, Noval García R, et al. Guía cubana de diagnóstico, evaluación y tratamiento de la hipertensión arterial. Revista Cubana de Medicina [Internet]. 2017 [citado 2024 Feb 28]; 56(4):242-321. Disponible en: http://scielo.sld.cu/pdf/med/v56n4/med01417.pdf

5. Álvarez I, Hernández L, García H, Villamandos V, López MG, Molinero JP, et al. Troponina T ultrasensible en pacientes asintomáticos de muy alto riesgo cardiovascular. Registro TUSARC. Rev Esp Cardiol. 2017; 70 (4): 261-266. DOI: https://doi.org/10.1016/j.recesp.2016.08.018

6. Konopelski P, Ufnal M. Electrocardiography in rats: a comparison to human. Physiol Res. 2016;65(5):717-725. DOI: 10.33549/physiolres.933270

7. Riching JW, Sleeper MM. Electrocardiography of Laboratory Animals, 2nd Edition. second. Academic Press; 2019. 120 p.

8. Fernández Carvajal J, Hinestroza L, Reyna Villasmil E, Mejia Montilla J, Reyna Villasmil N. Deshidrogenasa láctica sérica en pacientes con neumonía adquirida en la comunidad. Pulmón. 2015; 11: 19-25.

9. FNM, 2010. Ketamina 50. Formulario Nacional de Medicamentos [citado 10 abr. 2023]. CUBA. - KETAMINA-50 [WWW Document]. Disponible en: http://fnmedicamentos.sld.cu/index.php?P=FullRecord&ID=98

10. Romero, R.B.Manual de Calidad de la UTEX, Unidad de. Toxicología Experimental, UCM-VC, 2019. Santa Clara.

11. Gales A, Maxwell S, Claves P. Ketamina : Evidencia y Usos Corrientes. 2019 [citado 10 abr. 2023]: 1-8. Disponible en: www.wfsahq.org/resources/anaesthesia-tutorial-of-the-week

12. García Carretero R. Prevalence and clinical features of non-alcoholic steatohepatitis in a hypertensive population. Hipertension y Riesgo Vascular. 2018. SEH-LELHA, (XX), pp. 1–7. DOI: 10.1016/j.hipert.2018.10.001

13. Diez y Martínez de la Cotera EN, Benet Rodríguez M, Morejón Giraldoni A, García Núñez R. El consumo de sal ¿Riesgo o necesidad?. Revista Finlay [Internet]. 2011 [citado 2024 Feb 28]; 1(3): [aprox. 7 p.]. Disponible en: https://revfinlay.sld.cu/index.php/finlay/article/view/73

14. Seppo L, Jauhiainen T, Poussa T, Korpela R. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am J Clin Nutr. 2003;77(2):326-330. DOI: 10.1093/ajcn/77.2.326

15. Manzoni S. Sodium chloride: quality control certificate raw materials and ingredients for culture media materie prime ed ingredienti per terreni di coltura. Biolife Italiana Srl. 2016 [citado 10 abr. 2023]. Disponible en: http://www.biolifeit.com/public/cartellina-allegati-schede-certificazioni/certificati-di-analisi/412358-C87415.pdf

16. Kumar P, Srivastava P, Gupta A, Bajpai M. Noninvasive recording of electrocardiogram in conscious rat: A new device. Indian J Pharmacol. 2017;49(1):116-118. DOI: 10.4103/0253-7613.201031

17. Freitas SCF, Dos Santos CP, Arnold A, Stoyell-Conti FF, Dutra MRH, Veras M, et al. A method to assess heart rate variability in neonate rats: validation in normotensive and hypertensive animals. Braz J Med Biol Res. 2020 Jun 26;53(8): e9493. DOI: 10.1590/1414-431X20209493

18. Berthon B, Behaghel A, Mateo P, Dansette PM, Favre H, Ialy-Radio N, et al. Mapping Biological Current Densities with Ultrafast Acoustoelectric Imaging: Application to the Beating Rat Heart. IEEE Trans Med Imaging. 2019; 38 (8):1852–7. DOI: 10.1109/TMI.2019.2898090

19. Sasaki T, Nishimura Y, Ikegaya Y. Simultaneous Recordings of Central and Peripheral Bioelectrical Signals in a Freely Moving Rodent. Biol Pharm Bull. 2017;40(5):711-715. DOI: 10.1248/bpb.b17-00070

20. Shikano Y, Sasaki T, Ikegaya Y. Simultaneous recordings of cortical local field potentials, electrocardiogram, electromyogram, and breathing rhythm from a freely moving rat. J Vis Exp. 2018; 2018 (134):1-4. DOI: 10.3791/56980

21. Miki K, Kosho A, Hayashida Y. Method for continuous measurements of renal sympathetic nerve activity and cardiovascular function during exercise in rats. Exp Physiol. 2002; 87(1):33–9. DOI: 10.1113/eph8702281

22. Lin HT, Shiou YL, Jhuang WJ, Lee HC. Simultaneous Electrocardiography Recording and Invasive Blood Pressure Measurement in Rats. J Vis Exp. 2019;(143): 1-8. DOI: 10.3791/59115

Choisy SC, Arberry LA, Hancox JC, James AF. Increased susceptibility to atrial tachyarrhythmia in spontaneously hypertensive rat hearts. Hypertension. 2007;49(3):498-505. DOI: 10.1161/01.HYP.0000257123.95372.ab

23. Khan SR. Animal Models of Calcium Oxalate Kidney Stone Formation. In Animal Models for the Study of Human Disease. Elsevier Inc. 2013. p. 483-498 DOI: 10.1016/B978-0-12-415894-8.00021-X

24. Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, et al. Animal Models of Hypertension: A Scientific Statement From the American Heart Association. Hypertension. 2019; 73 (6): e87-e120. DOI: 10.1161/HYP.0000000000000090

25. Rezende LMT, Soares LL, Drummond FR, Suarez PZ, Leite L, Rodrigues JA, et al. Is the Wistar Rat a more Suitable Normotensive Control for SHR to Test Blood Pressure and Cardiac Structure and Function? Int J Cardiovasc Sci. 2022; 35 (2): 161-171. DOI: https://doi.org/10.36660/ijcs.20200367

26. Admanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev. 2017; 97 (4): 1469-1528. DOI: 10.1152/physrev.00035.2016

Published

2023-11-14

How to Cite

1.
Romero Borges R, Mendoza Jiménez D, Llerena Bernal T, García Gómez ML. Models of arterial hypertension in rats Wistar. Invest Medicoquir [Internet]. 2023 Nov. 14 [cited 2025 Dec. 16];15(2). Available from: https://revcimeq.sld.cu/index.php/imq/article/view/852

Issue

Section

Research article